ReentranReadWriteLock读写锁

功能

ReentrantReadWriteLock是Lock的另一种实现方式,我们已经知道了ReentrantLock是一个排他锁,同一时间只允许一个线程访问,而ReentrantReadWriteLock允许多个读线程同时访问,但不允许写线程和读线程、写线程和写线程同时访问。相对于排他锁,提高了并发性。在实际应用中,大部分情况下对共享数据(如缓存)的访问都是读操作远多于写操作,这时ReentrantReadWriteLock能够提供比排他锁更好的并发性和吞吐量。

原理

读写锁内部维护了两个锁,一个用于读操作,一个用于写操作。所有 ReadWriteLock实现都必须保证 writeLock操作的内存同步效果也要保持与相关 readLock的联系。也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新。

ReentrantReadWriteLock支持以下功能: 1)支持公平和非公平的获取锁的方式; 2)支持可重入。读线程在获取了读锁后还可以获取读锁;写线程在获取了写锁之后既可以再次获取写锁又可以获取读锁; 3)还允许从写入锁降级为读取锁,其实现方式是:先获取写入锁,然后获取读取锁,最后释放写入锁。但是,从读取锁升级到写入锁是不允许的; 4)读取锁和写入锁都支持锁获取期间的中断; 5)Condition支持。仅写入锁提供了一个 Conditon 实现;读取锁不支持 Conditon ,readLock().newCondition() 会抛出 UnsupportedOperationException。 问题代码与解决分析

class MyCache{
    private volatile Map map = new HashMap();
    public void put(String key,Object value){  
        System.out.println(Thread.currentThread().getName()+"\t 正在写"+key);
//暂停一会儿线程
        try {TimeUnit.MILLISECONDS.sleep(300);} catch (InterruptedException e) {e.printStackTrace(); }
        map.put(key,value);
        System.out.println(Thread.currentThread().getName()+"\t 写完了"+key);
    }

    public Object get(String key){
        Object result = null;
        System.out.println(Thread.currentThread().getName()+"\t 正在读"+key);
        try {TimeUnit.MILLISECONDS.sleep(300);} catch (InterruptedException e) {e.printStackTrace(); }
        result = map.get(key);
        System.out.println(Thread.currentThread().getName()+"\t 读完了"+result);
        return result;
    }
}
public class ReadWriteLockDemo {


    public static void main(String[] args) {
        MyCache myCache = new MyCache();

        for (int i = 1; i <=5; i++) {
            final int num = i;
            new Thread(()->{
                myCache.put(num+"",num+"");
            },String.valueOf(i)).start();
        }
        for (int i = 1; i <=5; i++) {
            final int num = i;
            new Thread(()->{
                myCache.get(num+"");
            },String.valueOf(i)).start();
        }

    }


}

上面的代码会因为没有加锁而导致内容撕裂,一个线程写时另一个线程也在写会出问题

解决代码

class MyCache {
    private volatile Map map = new HashMap();
    private ReadWriteLock rwLock = new ReentrantReadWriteLock();

    public void put(String key, Object value) {
        rwLock.writeLock().lock();
        try {
            System.out.println(Thread.currentThread().getName() + "\t 正在写" + key);
//暂停一会儿线程
            try {
                TimeUnit.MILLISECONDS.sleep(300);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            map.put(key, value);
            System.out.println(Thread.currentThread().getName() + "\t 写完了" + key);
            System.out.println();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            rwLock.writeLock().unlock();
        }

    }

    public Object get(String key) {
        rwLock.readLock().lock();
        Object result = null;
        try {
            System.out.println(Thread.currentThread().getName() + "\t 正在读" + key);
            try {
                TimeUnit.MILLISECONDS.sleep(300);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            result = map.get(key);
            System.out.println(Thread.currentThread().getName() + "\t 读完了" + result);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            rwLock.readLock().unlock();
        }
        return result;
    }
}

public class ReadWriteLockDemo {


    public static void main(String[] args) {
        MyCache myCache = new MyCache();

        for (int i = 1; i <=5; i++) {
            final int num = i;
            new Thread(() -> {
                myCache.put(num + "", num + "");
            }, String.valueOf(i)).start();
        }
        for (int i = 1; i <=5; i++) {
            final int num = i;
            new Thread(() -> {
                myCache.get(num + "");
            }, String.valueOf(i)).start();
        }

    }


}

BlockingQueueDemo阻塞队列(重点)

栈与队列

栈:先进后出,后进先出 队列:先进先出

阻塞队列:

阻塞:必须要阻塞/不得不阻塞 阻塞队列是一个队列,在数据结构中起的作用如下图

线程1往阻塞队列里添加元素,线程2从阻塞队列里移除元素

当队列是空的,从队列中获取元素的操作将会被阻塞,当队列是满的,从队列中添加元素的操作将会被阻塞 试图从空的队列中获取元素的线程将会被阻塞,直到其他线程往空的队列插入新的元素 试图向已满的队列中添加新元素的线程将会被阻塞,直到其他线程从队列中移除一个或多个元素或者完全清空,使队列变得空闲起来并后续新增。

阻塞队列的用处

在多线程领域:所谓阻塞,在某些情况下会挂起线程(即阻塞),一旦条件满足,被挂起的线程又会自动被唤起

为什么需要BlockingQueue? 好处是我们不需要关心什么时候需要阻塞线程,什么时候需要唤醒线程,因为这一切BlockingQueue都给你一手包办了

在concurrent包发布以前,在多线程环境下,我们每个程序员都必须去自己控制这些细节,尤其还要兼顾效率和线程安全,而这会给我们的程序带来不小的复杂度。

继承架构与种类

ArrayBlockingQueue:由数组结构组成的有界阻塞队列。 LinkedBlockingQueue:由链表结构组成的有界(但大小默认值为integer.MAX_VALUE)阻塞队列。//可扩容 PriorityBlockingQueue:支持优先级排序的无界阻塞队列。 DelayQueue:使用优先级队列实现的延迟无界阻塞队列。 SynchronousQueue:不存储元素的阻塞队列,也即单个元素的队列。 LinkedTransferQueue:由链表组成的无界阻塞队列。 LinkedBlockingDeque:由链表组成的双向阻塞队列。

常用核心方法

抛出异常 当阻塞队列满时,再往队列里add插入元素会抛IllegalStateException:Queue full 当阻塞队列空时,再往队列里remove移除元素会抛NoSuchElementException

特殊值 插入方法,成功ture失败false 移除方法,成功返回出队列的元素,队列里没有就返回null

一直阻塞 当阻塞队列满时,生产者线程继续往队列里put元素,队列会一直阻塞生产者线程直到put数据or响应中断退出 当阻塞队列空时,消费者线程试图从队列里take元素,队列会一直阻塞消费者线程直到队列可用

超时退出 当阻塞队列满时,队列会阻塞生产者线程一定时间,超过限时后生产者线程会退出

/**
 * 阻塞队列
 */
public class BlockingQueueDemo {

    public static void main(String[] args) throws InterruptedException {

//        List list = new ArrayList();

        BlockingQueue blockingQueue = new ArrayBlockingQueue(3);
//第一组
        System.out.println(blockingQueue.add("a"));
        System.out.println(blockingQueue.add("b"));
        System.out.println(blockingQueue.add("c"));
        System.out.println(blockingQueue.element());

        System.out.println(blockingQueue.add("x"));
        System.out.println(blockingQueue.remove());
        System.out.println(blockingQueue.remove());
        System.out.println(blockingQueue.remove());
        System.out.println(blockingQueue.remove());
 //   第二组
//        System.out.println(blockingQueue.offer("a"));
//        System.out.println(blockingQueue.offer("b"));
//        System.out.println(blockingQueue.offer("c"));
//        System.out.println(blockingQueue.offer("x"));
//        System.out.println(blockingQueue.poll());
//        System.out.println(blockingQueue.poll());
//        System.out.println(blockingQueue.poll());
//        System.out.println(blockingQueue.poll());
//    第三组
//         blockingQueue.put("a");
//         blockingQueue.put("b");
//         blockingQueue.put("c");
//         //blockingQueue.put("x");
//        System.out.println(blockingQueue.take());
//        System.out.println(blockingQueue.take());
//        System.out.println(blockingQueue.take());
//        System.out.println(blockingQueue.take());

//    第四组
//        System.out.println(blockingQueue.offer("a"));
//        System.out.println(blockingQueue.offer("b"));
//        System.out.println(blockingQueue.offer("c"));
//        System.out.println(blockingQueue.offer("a",3L, TimeUnit.SECONDS));

    }
}